Crystal Structures of Acid Hydrates and Oxonium Salts. VII. Bis(methanesulphonyl)imide Monohydrate*

By Rainer Attig and Dietrich Mootz
Lehrstuhl für Strukturchemie und Anorganische Chemie, Universität Düsseldorf, Universitätsstr. 1, D4 Düsseldorf, Germany (BRD)

(Received 10 December 1974; accepted 30 December 1974)

Abstract

CH}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{NH} . \mathrm{H}_{2} \mathrm{O}\), monoclinic, $\mathrm{C} 2 / c, a=$ 12.705 (3), $b=7.511$ (2), $c=8.066$ (1) $\AA, \beta=97.22$ (2) ${ }^{\circ}$, $Z=4, D_{m}=1 \cdot 657, D_{x}=1.663 \mathrm{~g} \mathrm{~cm}^{-3}$. A short NH $\cdots \mathrm{O}$ hydrogen bond [$\mathrm{N} \cdots \mathrm{C} 2.737$ (2) \AA] along a twofold crystallographic axis connects the imide with the water molecule. Both are further linked into an endless double chain by two weak, equivalent, $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds from the water molecule to two imide molecules. The atomic arrangement is similar to that of several XY_{2} compounds with tetrahedral Y groups.

Introduction. The systematic absences $h k l$ for $h+k$ odd and $h 0 l$ for l odd led to $C 2 / c$ or $C c$. Cell constants were determined from diffractometric measurements. The intensities of 1683 independent reflexions with $3.7^{\circ}<\theta<35^{\circ}$ were measured with Zr -filtered Mo $K \alpha$ radiation on a Siemens automatic diffractometer with a $\theta / 2 \theta$ scan, 1332 reflexions having significant intensities. The data crystal had been ground to nearly spherical shape with 0.4 mm diameter. With $\mu=6.5$ cm^{-1} no corrections for absorption were made.

The Patterson function led to the interpretation of one S atom in $C 2 / c$. All heavy atoms were found in the following Fourier synthesis. After anisotropic refinement of these atoms ($R=0.054$) a difference map showed the positions of all five H atoms as highest peaks. Nine strong reflexions of low order were omitted to decrease extinction effects. H atoms were refined anisotropically despite the known uncertainty of their

[^0]location by X-ray diffraction. The resulting thermal values seem to be acceptable, especially for the methyl H atoms.

The final R was 0.051 for all reflexions and 0.030 for the significant ones only. Atomic parameters are listed in Table 1. Atomic form factors were those of Hanson, Herman, Lea \& Skillman (1964) for S, O, N, C and those of Stewart, Davidson \& Simpson (1965) for $\mathrm{H} . \dagger$

An analysis of the thermal parameters of the heavy atoms was carried out assuming rigid-body motion of the imide molecule (Schomaker \& Trueblood, 1968).
\dagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30841 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Atomic parameters and their standard deviations
The $B_{i j}$ in \AA^{2} are listed using the expression $\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+\right.\right.$ $\left.\left.2 B_{23} k l b^{*} c^{*}+\ldots\right)\right]$. Hydrogen atoms were refined anisotropically because a mixed-mode program was not available.

	x	y	z
S	$0 \cdot 39521$ (2)	$0 \cdot 28642$ (3)	$0 \cdot 15234$ (3)
O(1)	$0 \cdot 34018$ (8)	$0 \cdot 42088$ (12)	0.05080 (12)
$\mathrm{O}(2)$	$0 \cdot 43086$ (7)	$0 \cdot 13080$ (11)	0.07442 (11)
$\mathrm{O}(W)$	$0 \cdot 5$	0.75195 (22)	0.25
N	$0 \cdot 5$	$0 \cdot 38756$ (15)	0.25
C	$0 \cdot 31887$ (10)	$0 \cdot 22166$ (17)	$0 \cdot 30749$ (16)
H(1)	0.5	0.5067 (58)	0.25
$\mathrm{H}(2)$	0.4879 (24)	0.8206 (27)	$0 \cdot 3308$ (29)
H(3)	$0 \cdot 3010$ (19)	0.3316 (29)	$0 \cdot 3725$ (26)
H(4)	0.3597 (18)	$0 \cdot 1221$ (29)	$0 \cdot 3785$ (31)
H(5)	0.2523 (16)	$0 \cdot 1818$ (26)	$0 \cdot 2501$ (32)

Table 1 (cont.)

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
S	$2 \cdot 29$ (1)	$1 \cdot 91$ (1)	2.21 (1)	$0 \cdot 17$ (1)	$0 \cdot 34$ (1)	-0.05 (1)
$\mathrm{O}(1)$	$3 \cdot 55$ (4)	3.48 (5)	$3 \cdot 80$ (4)	$0 \cdot 65$ (3)	-0.21 (3)	0.96 (3)
O(2)	$3 \cdot 77$ (3)	2.86 (3)	$3 \cdot 50$ (3)	$0 \cdot 32$ (2)	0.53 (3)	-1.18 (2)
$\mathrm{O}(W)$	13.74 (20)	$2 \cdot 15$ (4)	$3 \cdot 93$ (7)	0.0	$3 \cdot 39$ (10)	$0 \cdot 0$
N	$2 \cdot 43$ (4)	1.55 (3)	$3 \cdot 74$ (5)	$0 \cdot 0$	$0 \cdot 30$ (4)	$0 \cdot 0$
C	3.08 (4)	$3 \cdot 34$ (5)	$3 \cdot 26$ (4)	-0.77 (3)	$0 \cdot 96$ (3)	-0.08 (3)
$\mathrm{H}(1)$	$0 \cdot 6$ (8)	$12 \cdot 1$ (23)	$5 \cdot 8$ (15)	$0 \cdot 0$	-0.4 (9)	0.0
H(2)	$12 \cdot 1$ (20)	$4 \cdot 2$ (9)	$4 \cdot 3$ (11)	-0.9 (12)	$6 \cdot 1$ (13)	$0 \cdot 5$ (9)
H(3)	$9 \cdot 5$ (16)	$5 \cdot 2$ (10)	$4 \cdot 0$ (10)	-4.2 (12)	$3 \cdot 1$ (11)	$-2 \cdot 8$ (9)
H(4)	$3 \cdot 9$ (10)	$4 \cdot 7$ (10)	$8 \cdot 1$ (14)	1.0 (8)	$0 \cdot 1$ (9)	1.4 (10)
H(5)	$3 \cdot 0$ (9)	$5 \cdot 2$ (11)	$7 \cdot 3$ (13)	-2.5 (8)	-0.4 (9)	-1.0 (10)

With unit weights, the generalized index $R_{G}=$ [$\Sigma\left(U_{c}-U_{o}\right)^{2} / \sum U_{o}^{2}{ }^{1 / 2}$ was 0.103 with a root-mean-square discrepancy of 0.0034 . The results are displayed in Table 2; they have been used to apply the libration corrections to the bond lengths given in Fig. 1. These results are similar to those of the molecules $\mathrm{CH}_{2}\left(\mathrm{SO}_{3}^{-}\right)_{2}$ (Truter, 1962), $\mathrm{NH}\left(\mathrm{SO}_{3}^{-}\right)_{2}$ (Cruickshank \& Jones, 1963) and $\mathrm{CH}_{2}\left(\mathrm{POCl}_{2}\right)_{2}$ (Sheldrick, 1975).

Discussion. The bis(methanesulphonyl)imide molecule possesses a remarkably acid proton. The $p K_{a}$ value of $2 \cdot 8$ (Blaschette, 1969) resembles that of monochloro-

Table 2. Rigid-body librational analysis
Centre of mass (orthogonal coordinates*): $0.5,0.2815,0.1510$ (crystal coordinates) : $0.5,0.2815,0.25$

Tensors with respect to orthogonal axes and origin at the centre of mass with estimated standard deviations in parentheses

$\mathbf{T}\left(\AA \times 10^{-4}\right)$	$348(12)$	0	$-24(12)$
		$-158(19)$	0
$\mathbf{L}\left(\mathrm{rad} \times 10^{-4}\right)$	$124(11)$	0	$275(18)$
		$-22(5)$	$-13(4)$
		0	
$\mathbf{S}\left(\AA . \mathrm{rad} \times 10^{-4}\right)$	$-9(6)$	0	$-13(5)$
	0	$20(5)$	0
	$9(6)$	0	$-11(5)$

Origin (orthogonal coordinates) which gives symmetric \mathbf{S} :

$$
0 \cdot 5,0 \cdot 28466,0 \cdot 1510
$$

Principal root-mean-square amplitudes and direction cosines

$\mathbf{T}(\AA) \dagger$	0.187	0.9941	0	0.1084
	0.164	0	1.0	0
	0.126	-0.1084	0	0.9941
L (rad)	0.112	0.9900	0	0.1414
	0.055	0	1.0	0
	0.047	-0.1414	0	0.9900

* Referred to $a \sin \beta, b, c$.
\dagger Reduced to keep U invariant.

Fig. 1. The imide molecule with bond lengths and bond angles. Standard deviations: bond lengths from S $0.001 \AA$, to H $0.02 \AA$, bond angles around S and $\mathrm{N} 0.05^{\circ}$ and around $\mathrm{C} 2^{\circ}$. Bond lengths in parentheses are corrected for thermal motion.

Fig. 2. Hydrogen-bonded double chain of imide and water molecules along the c-axis direction.
acetic acid and also the $p K_{a}$ value of the second step of dissociation of hypodiphosphoric acid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$, which forms a dioxonium salt when crystallized with two molecules of water (Mootz \& Altenburg, 1971). Despite the possible formation of an oxonium salt not yet described for an N-H acidic compound - the title compound turned out to be a true acid hydrate with the proton at the N atom and not transferred to the water molecule. Fig. 1 shows the imide molecule with bond lengths and angles. The N-H bond lies on a crystallographic twofold axis with no evidence of statistical superposition of actual atomic displacements from this symmetry element. Therefore the configuration of the N atom is planar with $s p^{2}$ hybridization. The lone pair of electrons in the remaining p orbital perpendicular to the SNS plane gives rise to π bonding with d orbitals of the S atoms and shortens the bond distance to 1.645 (1) \AA compared to the pure single bond distance of 1.76 (2) \AA in $\mathrm{SO}_{3} \mathrm{NH}_{3}$ (Sass, 1960). The SN length of 1.645 (1) \AA and SNS angle of $125.0(1)^{\circ}$ are similar to those of the salt $\mathrm{K}_{2}\left(\mathrm{SO}_{3}\right)_{2} \mathrm{NH}[1 \cdot 662$ (5) \AA and $125 \cdot 5(5)^{\circ}$; Cruickshank \& Jones (1963)]. The S-O mean length of 1.427 (1) \AA and S-C length of 1.746 (1) \AA compare well with those of other $\mathrm{SO}_{2} \mathrm{CH}_{3}$ groups, e.g. in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHSO}_{2} \mathrm{CH}_{3}$ with 1.434 (3) and 1.746 (3) \AA (Klug, 1968); in $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{NHSO}_{2} \mathrm{CH}_{3}$ with 1.441 (6) and 1.736 (6) \AA (Klug, 1970); and in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SNSO}_{2} \mathrm{CH}_{3}$ with 1.447 (12) and 1.749 (12) \AA (Kálmán, 1967).

The water O atom is also located on the twofold axis, along which it is connected with the imide molecule through an NH $\cdots \mathrm{O}$ hydrogen bond. The two equivalent water H atoms are engaged in a weak hydrogen bond each to O atoms of two further imide molecules. The distance $\mathrm{O}(W)-\mathrm{O}(2)$ is 2.995 (1) \AA, that from $\mathrm{H}(2)$ to these O atoms 0.86 (2) and 2.21 (3) \AA, with an angle of 152 (2) ${ }^{\circ}$ at $\mathrm{H}(2)$. The resulting infinite double chains of alternating hydrogen-bonded imide and water molecules are shown in Fig. 2. The planar arrangement of hydrogen bonds around the water molecule together with its relatively free surrounding vertical to this plane causes an unusual large B_{11} value for the O atom [and even for the poorly determined $\mathrm{H}(2)$ atom]. No attempt was made to refine two split positions of water molecules on two sides of the twofold axis.

The arrangement of the imide molecules of this compound in the space group $C 2 / \mathrm{c}$ resembles that of sev-

Table 3. Examples of compounds with species $X Y X$ in the space group $C 2 / c$ with unit-cell dimensions and geometry of the bridging groups, when known

	Ref.	a	b	c	β	$\mathrm{X}-\mathrm{Y}-\mathrm{X}$	X-Y
$\mathrm{CH}_{2}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	a	12.55	7.75	7.30	$90 \cdot 5$	119.7 (7) ${ }^{\circ}$	1.770 (7) \AA
$\mathrm{CH}_{2}\left(\mathrm{SO}_{3} \mathrm{NH}_{4}\right)_{2}$	b	12.70	7.85	$7 \cdot 65$	$92 \cdot 6$		
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	c	12.43	$7 \cdot 46$	$7 \cdot 18$	91.2	$124 \cdot 5$ (5)	1.662 (5)
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{NH}_{4}\right)_{2}$	b	12.72	$7 \cdot 74$	$7 \cdot 49$	$92 \cdot 8$		
$\mathrm{NH}\left(\mathrm{SO}_{3} \mathrm{Rb}\right)_{2}$	b	12.80	$7 \cdot 68$	$7 \cdot 45$	91.9		
$\mathrm{NH}\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$	d	12.71	$7 \cdot 51$	8.07	$97 \cdot 2$	125.0 (1)	1.645 (1)
$\mathrm{O}\left(\mathrm{SO}_{3} \mathrm{~K}\right)_{2}$	e	12.35	$7 \cdot 31$	$7 \cdot 27$	$93 \cdot 1$	$124 \cdot 2$ (3)	1.645 (5)
$\mathrm{O}\left(\mathrm{CrO}_{3} \mathrm{NH}_{4}\right)_{2}$	f	$13 \cdot 26$	$7 \cdot 54$	7.74	$93 \cdot 2$	115	1.91 (5)
$\mathrm{S}\left(\mathrm{SO}_{3} \mathrm{Tl}\right)_{2}$	g	13.20	$7 \cdot 45$	7.58	91.0		
$\mathrm{CH}_{2}\left(\mathrm{POCl}_{2}\right)_{2}$	h	15.87	$5 \cdot 85$	$9 \cdot 16$	$106 \cdot 6$	116.4 (4)	1.795 (4)

References: (a) Truter (1962). (b) Jones (1955). (c) Cruickshank \& Jones (1963). (d) This work. (e) Lynton \& Truter (1960). (f) Byström \& Wilhelmi (1951). (g) Ketelaar \& Sanders (1936). (h) Sheldrick (1975).
eral neutral or anionic species $\mathrm{X}-\mathrm{Y}-\mathrm{X}$ with bridging Y , such as $\mathrm{CH}_{2}, \mathrm{NH}, \mathrm{O}, \mathrm{S}$ and tetrahedral groups X , with central S, P or Cr (Table 3).

We thank Dr A. Blaschette, Braunschweig, for instigating this work and for a sample of the compound, Dr W. S. Sheldrick, Braunschweig, for performing the rigid-body calculations. The Deutsche Forschungsgemeinschaft has supported this research by providing the diffractometer.

References

Blaschette, A. (1969). Z. Naturforsch. 24b, 1485-1486. Byström, A. \& Wilhelmi, K.-A. (1951). Acta Chem. Scand. 5, 1003-1010.
Cruickshank, D. W. J. \& Jones, D. W. (1963). Acta Cryst. 16, 877-883.

Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Jones, D. W. (1955). Acta Cryst. 8, 66-67.
Kálmán, A. (1967). Acta Cryst. 22, 501-507.
Ketelatar, J. A. A. \& Sanders, J. K. (1936). J. Chem. Phys. 4, 621.
Klug, H. P. (1968). Acta Cryst. B24, 792-802.
Klug, H. P. (1970). Acta Cryst. B26, 1268-1275.
Lynton, H. \& Truter, M. R. (1960). J. Chem. Soc. pp. 5112-5118.
Mootz, D. \& Altenburg, H. (1971). Acta Cryst. B27, 1520-1523.
Sass, R. L. (1960). Acta Cryst. 13, 320-324.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, W. S. (1975). J. Chem. Soc. In the press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965).
J. Chem. Phys. 42, 3175-3187.

Truter, M. R. (1962). J. Chem. Soc. pp. 3393-3399.

Octamethylbicyclopentasiloxane

By Gy. Menczel and J. Kiss
Department of Solid State Physics, L. Eötvös University, H-1088 Budapest, Muzeum krt. 6-8, Hungary

(Received 11 November 1974; accepted 16 December 1974)

Abstract. $\mathrm{Si}_{5} \mathrm{O}_{6} \mathrm{C}_{8} \mathrm{H}_{24}, \mathrm{M} . \mathrm{W} .365 \cdot 5$, m.p. $115^{\circ} \mathrm{C}$, space
group $P 2_{1} / m$, monoclinic (from systematic absences
and E statistics), $a=8 \cdot 595(5), b=14 \cdot 321(5), c=8 \cdot 116$
(4) $\AA, \beta=90 \cdot 7^{\circ}$ (from oscillation and Weissenberg
photographs), $Z=2, D_{x}=1 \cdot 184, D_{m}=1 \cdot 163(6) \mathrm{g} \mathrm{cm}^{-3}$
(by flotation). The symmetry of the molecule is near to
$62 m$, the direction connecting $\mathrm{Si}(1)$ and $\mathrm{Si}(3)$ being the
pseudotrigonal axis.
Introduction. Garzó, Székely, Tamás \& Ujszászi (1971)
isolated and identified several new polycyclic methyl-
polysiloxane oligomers produced by thermal decompo-
sition of branched-chain polymers. The title compound was chosen first in order to determine its structure by X-ray methods. It will be denoted as $\mathrm{T}_{2} \mathrm{D}_{3}$ where T stands for the unit $\mathrm{CH}_{3} \mathrm{SiO}_{3 / 2}$ and D for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiO}_{2 / 2}$. Like several cyclic methylpolysiloxanes, $\mathrm{T}_{2} \mathrm{D}_{3}$ is characterized by high volatility. A crystal of the appropriate size for X-ray investigation volatilized after about 20 min at ambient pressure and temperature. The sample was sealed in a thin-walled glass capillary tube 0.3 mm in diameter). Weissenberg photographs were taken at $20-22^{\circ} \mathrm{C}$ with unfiltered Cu radiation around [001] (0-5 layers) and [$\overline{1} 10]$ (0-9 layers), all with the same

[^0]: * Short version of part of the dissertation of R. Attig, Technische Universität Braunschweig, Germany (BRD), 1973. For part VI of this series see Mootz \& Altenburg (1971).

